AAML1831: A study to compare standard chemotherapy to therapy with CPX-351 and/or gilteritinib for patients with newly diagnosed AML with or without FLT3 mutations.

Cancer Pediatrics Leukemia Pediatric Subjects Adult Subjects

This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.

SNDX-5613-0700 for Relapsed/Refractory Leukemias

Cancer Pediatrics Leukemia Pediatric Subjects Adult Subjects

Phase 1 dose escalation will determine the maximum tolerated dose (MTD) and recommended Phase 2 dose (RP2D) of revumenib in participants with acute leukemia.

In Phase 2, participants will be enrolled in 3 indication-specific expansion cohorts to determine the efficacy, short- and long-term safety, and tolerability of revumenib.

VLCD efficacy in the treatment of NAFLD.

Internal Medicine Immunology Endocrinology Gastroenterology Infectious Disease Cancer Autoimmune Diabetes Liver Disease Digestive Disease Viral Infectious Diseases Liver Cancer Thyroid Disorders Adult Subjects Female Subjects Male Subjects

Non-alcoholic fatty liver disease (NAFLD) is a common complication of obesity which can progress to deadly complications like end-stage liver disease and hepatocellular carcinoma. In the wake of the obesity epidemic, NAFLD is becoming the main etiology of liver transplantation in the US. Currently, there are no FDA approved pharmacological treatments for NAFLD. Weight loss through lifestyle modifications, pharmacotherapy and bariatric surgery can be effective strategies for the management of NAFLD. Even though substantial weight loss and improvement in NAFLD can be achieved with bariatric surgery, only a small proportion of patients with obesity undergo surgery. Very-low calorie diets (VLCD) are replacement meals manufactured to substitute natural foods and limited total intake of 800-960 kcal in divided meals. Very low-calorie diets can produce substantial weight loss of 10% over 2 to 3 months. We hypothesize that VLCD reduce liver steatosis and, fibrosis measured non-invasively with transient elastography. Our main aim is #1 to assess the effect of VLCD on liver fatty infiltration and fibrosis. We also have three exploratory aims exploring novel pathogenic factors that mediate the improvement of NAFLD by VLCD: #2 assess the effect of VLCD on micro RNAs (miRs) associated with pathophysiology of NAFLD: #3 assess the effect of VLCD on changes of salivary and fecal microbiome in the setting of NAFLD: #4 to determine the effect of VLCD on platelet function. This pilot project will produce preliminary data for the development of a larger grant application to study the efficacy of VLCD in the management of NAFLD. Furthermore, it will potentially identify factors that mediate improvement of NAFLD after VLCD. We will treat 10 subjects with obesity and NAFLD for 8 weeks with VLCD or lower calorie diet (control group) and obtain transient elastography before and after the interventions along with other measurements of interest. Our project may have significant impact by establishing VLCD as a clinically effective option for the improvement of liver steatosis and fibrosis in patients with obesity and NAFLD ineligible or without access to bariatric surgery.

AALL1821: A study to compare blinatumomab alone to blinatumomab with nivolumab in patients diagnosed with first relapse B cell Acute Lymphoblastic Leukemia (B-ALL).

Cancer Pediatrics Leukemia Pediatric Subjects Adult Subjects

This phase II trial studies the effect of nivolumab in combination with blinatumomab compared to blinatumomab alone in treating patients with B-cell acute lymphoblastic leukemia (B-ALL) that has come back (relapsed). Down syndrome patients with relapsed B-ALL are included in this study. Blinatumomab is an antibody, which is a protein that identifies and targets specific molecules in the body. Blinatumomab searches for and attaches itself to the cancer cell. Once attached, an immune response occurs which may kill the cancer cell. Nivolumab is a medicine that may boost a patient's immune system. Giving nivolumab in combination with blinatumomab may cause the cancer to stop growing for a period of time, and for some patients, it may lessen the symptoms, such as pain, that are caused by the cancer.

ACNS1931: A Study to Compare Treatment with the Drug Selumetinib Alone vs. Selumetinib and Vinblastine in Patients with Recurrent or Progressive Low-Grade Glioma

Cancer Pediatrics Brain and Spinal Cord Cancer Pediatric Subjects Adult Subjects

This phase III trial investigates the best dose of vinblastine in combination with selumetinib and the benefit of adding vinblastine to selumetinib compared to selumetinib alone in treating children and young adults with low-grade glioma (a common type of brain cancer) that has come back after prior treatment (recurrent) or does not respond to therapy (progressive). Selumetinib is a drug that works by blocking a protein that lets tumor cells grow without stopping. Vinblastine blocks cell growth by stopping cell division and may kill cancer cells. Giving selumetinib in combination with vinblastine may work better than selumetinib alone in treating recurrent or progressive low-grade glioma.

A multicenter, open-label, phase 2 study of intratumoral CMP-001 in combination with intravenous nivolumab in subjects with refractory unresectable or metastatic melanoma

Cancer Internal Medicine Melanoma Adult Subjects Female Subjects Male Subjects

CMP-001-010 is a Phase 2 study of CMP-001 intratumoral (IT) and nivolumab intravenous (IV) administered to participants with refractory unresectable or metastatic melanoma.

The primary objective of the study is to determine confirmed objective response with CMP-001 in combination with nivolumab in subjects with refractory unresectable or metastatic melanoma.

The secondary objectives are to:

* To evaluate the safety and tolerability of CMP-001 administered by intratumoral (IT) injection in combination with nivolumab in subjects with refractory unresectable or metastatic melanoma.
* To evaluate the efficacy of CMP-001 in combination with nivolumab in subjects with refractory unresectable or metastatic melanoma.
* To assess the pharmacokinetic (PK) profile of CMP-001 in combination with nivolumab in subjects with refractory unresectable or metastatic melanoma.
* To assess and describe the immunogenicity of CMP-001 in combination with nivolumab in subjects with refractory unresectable or metastatic melanoma.

Phase I/II study of Inhibrx-106 in Locally Advanced or Metastatic Solid Tumors

Cancer Internal Medicine Adult Subjects Female Subjects Male Subjects

This is a Phase 1/2, open-label, non-randomized, 4-part trial to determine the safety profile and identify the maximum tolerated dose (MTD) and/or recommended Phase 2 dose (RP2D) of INBRX 106 administered as a single agent or in combination with the anti-PD-1 checkpoint inhibitor (CPI) pembrolizumab (Keytruda®). KEYTRUDA is a registered trademark of Merck Sharp \& Dohme LLC, a subsidiary of Merck \& Co., Inc., Rahway, NJ, USA.

A Phase 1/2, Open-Label, Dose-Escalation Trial of GEN3013 in Patients with Relapsed, Progressive or Refractory B-Cell Lymphoma

Cancer Internal Medicine Lymphoma Adult Subjects Female Subjects Male Subjects

The purpose of this trial is to measure the following in participants with relapsed and/or refractory B-cell lymphoma who receive epcoritamab, an antibody also known as EPKINLY™ and GEN3013 (DuoBody®-CD3xCD20):

* The dose schedule for epcoritamab
* The side effects seen with epcoritamab
* What the body does with epcoritamab once it is administered
* What epcoritamab does to the body once it is administered
* How well epcoritamab works against relapsed and/or refractory B-cell lymphoma

The trial consists of 3 parts:

* a dose-escalation part \[Phase 1, first-in-human (FIH)\]
* an expansion part (Phase 2a)
* a dose-optimization part (OPT) (Phase 2a)

The trial time for each participant depends on which trial part the participant enters:

* For the dose-escalation part, each participant will be in the trial for approximately 1 year, which is made up of 21 days of screening, 6 months of treatment (the total time of treatment may be different for each participant), and 6 months of follow-up (the total time of follow-up may be different for each participant).
* For the expansion and dose-OPT parts, each participant will be in the trial for approximately 1.5 years, which is made up of 21 days of screening, 1 year of treatment (the total time of treatment may be different for each participant), and 6 months of follow-up (the total time of follow-up may be different for each participant).

Participation in the study will require visits to the sites. During the first month, participants must visit every day or every few days, depending on which trial part the participant enters. After that, participants must visit weekly, every other week, once a month, and once every 2 months, as trial participation ends.

All participants will receive active drug, and no participants will be given placebo.